网络TCP建立连接为什么需要三次握手而结束要四次

举个打电话的例子:

A : 你好我是A,你听得到我在说话吗

B : 听到了,我是B,你听到我在说话吗

A : 嗯,听到了

建立连接,开始聊天!

8
direct

为什么TCP协议终止链接要四次?

1、当主机A确认发送完数据且知道B已经接受完了,想要关闭发送数据口(当然确认信号还是可以发),就会发FIN给主机B。

2、主机B收到A发送的FIN,表示收到了,就会发送ACK回复。

3、但这是B可能还在发送数据,没有想要关闭数据口的意思,所以FIN与ACK不是同时发送的,而是等到B数据发送完了,才会发送FIN给主机A。

4、A收到B发来的FIN,知道B的数据也发送完了,回复ACK, A等待2MSL以后,没有收到B传来的任何消息,知道B已经收到自己的ACK了,A就关闭链接,B也关闭链接了。

A为什么等待2MSL,从TIME_WAIT到CLOSE?

在Client发送出最后的ACK回复,但该ACK可能丢失。Server如果没有收到ACK,将不断重复发送FIN片段。所以Client不能立即关闭,它必须确认Server接收到了该ACK。Client会在发送出ACK之后进入到TIME_WAIT状态。Client会设置一个计时器,等待2MSL的时间。如果在该时间内再次收到FIN,那么Client会重发ACK并再次等待2MSL。所谓的2MSL是两倍的MSL(Maximum Segment Lifetime)。MSL指一个片段在网络中最大的存活时间,2MSL就是一个发送和一个回复所需的最大时间。如果直到2MSL,Client都没有再次收到FIN,那么Client推断ACK已经被成功接收,则结束TCP连接。

这个网上转载的例子不错:

三次握手:
A:“喂,你听得到吗?”A->SYN_SEND

B:“我听得到呀,你听得到我吗?”应答与请求同时发出 B->SYN_RCVD | A->ESTABLISHED

A:“我能听到你,今天balabala……”B->ESTABLISHED

四次挥手:
A:“喂,我不说了。”A->FIN_WAIT1

B:“我知道了。等下,上一句还没说完。Balabala…..”B->CLOSE_WAIT | A->FIN_WAIT2

B:”好了,说完了,我也不说了。”B->LAST_ACK

A:”我知道了。”A->TIME_WAIT | B->CLOSED

A等待2MSL,保证B收到了消息,否则重说一次”我知道了”,A->CLOSED
链接:https://zhuanlan.zhihu.com/p/21940234

参考:http://blog.chinaunix.net/uid-25002135-id-3314682.html
http://www.cnblogs.com/vamei/archive/2012/12/16/2812188.html

TCP/IP四层模型和OSI七层模型

TCP/IP四层模型

TCP/IP是一组协议的代名词,它还包括许多协议,组成了TCP/IP协议簇。TCP/IP协议簇分为四层,IP位于协议簇的第二层(对应OSI的第三层),TCP位于协议簇的第三层(对应OSI的第四层)。TCP/IP通讯协议采用了4层的层级结构,每一层都呼叫它的下一层所提供的网络来完成自己的需求。这4层分别为: 

应用层:应用程序间沟通的层,如简单电子邮件传输(SMTP)、文件传输协议(FTP)、网络远程访问协议(Telnet)等。 

传输层:在此层中,它提供了节点间的数据传送服务,如传输控制协议(TCP)、用户数据报协议(UDP)等,TCP和UDP给数据包加入传输数据并把它传输到下一层中,这一层负责传送数据,并且确定数据已被送达并接收。 

互连网络层:负责提供基本的数据封包传送功能,让每一块数据包都能够到达目的主机(但不检查是否被正确接收),如网际协议(IP)。 

网络接口层:对实际的网络媒体的管理,定义如何使用实际网络(如Ethernet、Serial Line等)来传送数据。

OSI七层模型

OSI(Open System Interconnection,开放系统互连)七层网络模型称为开放式系统互联参考模型 ,是一个逻辑上的定义,一个规范,它把网络从逻辑上分为了7层。每一层都有相关、相对应的物理设备,比如路由器,交换机。OSI 七层模型是一种框架性的设计方法 ,建立七层模型的主要目的是为解决异种网络互连时所遇到的兼容性问题,其最主要的功能使就是帮助不同类型的主机实现数据传输。它的最大优点是将服务、接口和协议这三个概念明确地区分开来,通过七个层次化的结构模型使不同的系统不同的网络之间实现可靠的通讯。




                                               图1 osi七层结构

                                                

1.物理层:主要定义物理设备标准,如网线的接口类型、光纤的接口类型、各种传输介质的传输速率等。它的主要作用是传输比特流(就是由1、0转化为电流强弱来进行传输,到达目的地后在转化为1、0,也就是我们常说的数模转换与模数转换)。这一层的数据叫做比特【中继器、集线器、还有我们通常说的双绞线也工作在物理层】。
   
2.数据链路层:定义了如何让格式化数据以进行传输,以及如何让控制对物理介质的访问。这一层通常还提供错误检测和纠正,以确保数据的可靠传输【以太网交换机(二层交换机)、网卡(其实网卡是一半工作在物理层、一半工作在数据链路层)】。
  
3.网络层:在位于不同地理位置的网络中的两个主机系统之间提供连接和路径选择。Internet的发展使得从世界各站点访问信息的用户数大大增加,而网络层正是管理这种连接的层【工作在该层的有三层路由器、三层交换机】。
     
4.传输层:定义了一些传输数据的协议和端口号(WWW端口80等),如:TCP(传输控制协议,传输效率低,可靠性强,用于传输可靠性要求高,数据量大的数据),UDP(用户数据报协议,与TCP特性恰恰相反,用于传输可靠性要求不高,数据量小的数据,如QQ聊天数据就是通过这种方式传输的)。 主要是将从下层接收的数据进行分段和传输,到达目的地址后再进行重组。常常把这一层数据叫做段【工作在该层的有四层交换机、四层路由器】。
  
5.会话层:通过传输层(端口号:传输端口与接收端口)建立数据传输的通路。主要在你的系统之间发起会话或者接受会话请求(设备之间需要互相认识可以是IP也可以是MAC或者是主机名)
     
6.表示层:可确保一个系统的应用层所发送的信息可以被另一个系统的应用层读取。例如,PC程序与另一台计算机进行通信,其中一台计算机使用扩展二一十进制交换码(EBCDIC),而另一台则使用美国信息交换标准码(ASCII)来表示相同的字符。如有必要,表示层会通过使用一种通格式来实现多种数据格式之间的转换。 
    
7.应用层: 是最靠近用户的OSI层。这一层为用户的应用程序(例如电子邮件、文件传输和终端仿真)提供网络服务。

参考:http://blog.csdn.net/superjunjin/article/details/7841099